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Reminder
§ We introduced the basic notions of co-prime numbers and discussed several 

important concepts like the Bézout relation, or the Euclid lemma, that can be useful 
in understanding discrete configurations such as Bravais lattices. 

§ We reminded basic objects and calculations in 3D.

§ We used all these notions to review foundational aspects of crystallography 
including miller indices, crystal directions and planes. 

§ In particular, we showed that in the cubic systems, when the Miller indices are 
defined in the conventional cell (orthonormal basis), the planes (ℎ𝑘𝑙)	and directions 
ℎ𝑘𝑙  are orthogonal.

§ This is not true in other crystal structures !

o Tetragonal structure:

• 001 ⊥ 001

• But: 101 ⊥ 101

!

"

#

(001)

001

!

"

#

(101)101

!

101

(101)
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Overview

§ Reciprocal Space

§ Rational, Irrational and real numbers (ℝ)

§ Origin of complex numbers

§ Construction of ℂ

§ Important properties of complex numbers

§ Reciprocal space from X-ray diffraction (finish tomorrow)
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§ We would indeed obtain: 

AB . N*hkl = (-a/h+b/k).(ha* + kb* + lc*) = -a.a*+b.b*= 0

AC . N*hkl = (-a/h+c/l).(ha* + kb* + lc*) = -a.a*+cc*= 0

Miller Indices and Reciprocal Space
§ Can one find a new basis (O, a*, b*, c*) such that a vector N*hkl = ha* + kb* + lc* will be 
perpendicular to the plane (hkl) ?  

§ If A, B and C are the points of intercepts of the Bravais lattice vector 

basis (O, a, b, c) at a/h, b/k, and c/l respectively, we must have: 

o AB . N*hkl = (-a/h+b/k).(ha* + kb* + lc*) = 0

o AC . N*hkl = (-a/h+c/l).(ha* + kb* + lc*) = 0

§ This would work if a* was orthogonal to b and c, b* was orthogonal to a and c, and c* was 
orthogonal to a and b, and if a.a* = b.b* = c.c*. 

§ which we can write: 

𝑁'()∗ ⊥ (ℎ𝑘𝑙)

N* = ha* + kb* + lc*

!

"

#

O
A

C
B
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Reciprocal space
§ Reciprocal spaces are very useful in the understanding of crystals structure as well as in X-ray 

diffraction analysis.

§ They are also a great way to approach some concepts in the band theory of electrons in 
solids.  

§ One way to see reciprocal space is to create a new basis that would mimic the orthogonal 
symmetry that we find in the cubic crystal structure. 

§ For a Direct lattice space (O,a,b,c), we define the Reciprocal Lattice (O,a*,b*,c*) such that: 

§ The reciprocal lattice is: 𝑃,𝑶𝑷 = 𝑛!𝒂∗ + 𝑛#𝒃∗	!"𝑛$𝒄∗, (n1,n2,	n3) ∈ ℤ$ .

§ The first important aspect is that a is orthogonal to b* and c*: In most Bravais lattices, a is not 
orthogonal to b or c, so the scalar product a.b and a.c cannot be ignored. 

      If however we consider a vector in the direct space D = d1a + d2b + d3c and one in the                               
reciprocal space N* = n1a* + n2b* + n3c*, we have: 

𝑫.𝑵∗ = 𝑑!𝑛!𝒂. 𝒂∗ + 𝑑#𝑛#𝒃. 𝒃∗	!"𝑑$𝑛$𝒄. 𝒄∗ = 2𝜋(𝑑!𝑛! 	+ 𝑑#𝑛#	!"𝑑$𝑛$) 5
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Reciprocal space

x x x

§ Why 2𝜋 ? Not defined like that in all text books.  We will see that it is useful for the Diffraction 
of X-rays by crystal planes to have a 2𝜋 coefficient. 

§ How to construct the reciprocal basis from these considerations:  

§ A few properties: 

§ The reciprocal lattice of a reciprocal lattice is the direct lattice;

§ The reciprocal lattice of: 

o A primitive cubic lattice is primitive cubic:    𝑎∗ = #%
&! 𝑎⃗,   𝑏∗ = #%

&! 𝑏,  𝑐∗ = #%
&! 𝑐

o A body-centered cubic is face-centered cubic

o A face-centered cubic is a body-centered cubic.

A definition of Miller indices: 

Miller indices (hkl) represent the planes in the direct lattice that are orthogonal to the 
vector ℎ𝒂∗ +𝑘𝒃∗ +𝑙𝒄∗ in the reciprocal lattice.
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Example: Reciprocal lattice Monoclinic Primitive

!

"

#
O!

"
#$

§ Express the Bravais lattice vectors in the ℬ(",𝒙,𝒚,𝒛)!Orthonormal basis; 

§ Calculate the volume of the primitive cell;

§ Apply the formulae, which gives in ℬ((,𝒙,𝒚,𝒛): 

𝒂∗ = #%
&

1
0

−𝑐𝑜𝑡𝛽
; 𝒃∗ = #%

.

0
1
0

; 𝒄∗ = #%
/0123

0
0
1

o 𝒂 = 𝑎, 𝒃 = 𝑏, 𝒄 = 𝑐 , and  𝑎 ≠ 𝑏 ≠ 𝑐 
(where 𝒂  is the norm of the vector 𝒂);

o G𝒂,𝒄 = 𝜷, G𝒂,𝒃 = G𝒃, 𝒄 = 𝝅
𝟐
 (where G𝒂,𝒃  

is the angle between vectors 𝒂 and b). 

7
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§ The reciprical space formalism facilitates the derivation of the interplane distance of 
parallel (hkl) planes. 

N* = ha* + kb* + lc*

𝒄

𝒂

𝒃

O
A

C
B

𝑶𝑨 =
𝑎
ℎ 𝒙 𝑶𝑩 =

𝑏
𝑘
𝒚 𝑶𝑪 =

𝑐
𝑙 𝒛

𝑑(()*) = 𝑶𝑨.
𝑵(𝒉𝒌𝒍)∗

𝑵(𝒉𝒌𝒍)∗ = 𝑶𝑩.
𝑵(𝒉𝒌𝒍)∗

𝑵(𝒉𝒌𝒍)∗ = 𝑶𝑪.
𝑵(𝒉𝒌𝒍)∗

𝑵(𝒉𝒌𝒍)∗

§ Monoclinic case: 𝑵(𝒉𝒌𝒍)∗ =

2𝜋 9
&

2𝜋 :
.

#%
0123

− 9
&
𝑐𝑜𝑠𝛽 + ;

/

and 𝑑(9:;) =
!

"!
#!<

$
%&'!(

)!
*!<

+!
,!=

!)+
*, />03

Distance between (hkl) planes

By construction: 
𝑶𝑨.𝑵(𝒉𝒌𝒍)∗ = 𝑶𝑩.𝑵(𝒉𝒌𝒍)∗ = 𝑶𝑪.𝑵(𝒉𝒌𝒍)∗ = 2π

Demo: 𝑶𝑨.𝑵(𝒉𝒌𝒍)∗ = !
9𝒂. (ℎ𝒂

∗+𝑘𝒃∗ + 𝑙𝒄∗) = 𝒂. 𝒂∗ = 2π

So:                        𝑑(()*) =
/0

𝑵(𝒉𝒌𝒍)
∗
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dhkl = 
a0

 h2 + k2 + l2

dhkl = 
1

 !"
"
#

$
%
%
&h2

a2 + 
l2

c2 - 
2 hl
a c  cosβ  

1
sin2β + 

k2

b2

dhkl = 
1

h2

a2 + 
k2

b2 + 
l2

c2

dhkl = 
1

h2 + k2

a2  + 
l2

c2

dhkl = 
1

4
3 a2 (h2 + k2 + hk) + 

l2

c2

– Monoclinic:

– Orthorhombic:

–Tetragonal:

– Hexagonal:

– Cubic:

Distance between (hkl) planes

§ The calculation can be made for other structures:
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Algebraic structures - Fields

§  A Field is a set K under two operations + and × that satisfies the following: 

- (K,+,x) is a Ring;
- If 0K and 1K are the identities for + and x respectively, 0K ≠ 1K
- For every x ∈ K - {0K } there is an element y ∈ K such that x . y = y . x = 1K

If x is commutative, (K,+,x) is a commutative Field (and Ring). 

Examples: (ℤ , +,.) is not a field but (ℚ , +,.) (set of rational numbers) is !
  ℝ and	ℂ are fields for the common operations + and x. 

The set ℕ of positive integers is at the heart of the important field of enumeration. So that the 
sum of two numbers can be zero, the identity of the + operation, one needed to construct the 
set ℤ of relative integers. 
      Now to have a set with two operations, two identities, and the ability to have inverses for 
both, ie so that some elements times 2 or 3 can equal to 1 (identity for x), we must introduce 
the set of rational numbers ℚ based on the notion of Fields. 
Since important numbers such that e and 𝜋 are not rational, or the fact that there is no integers 
such that  2 = ?

2

#
, we will have to also build the set of real numbers ℝ that is the union 

between ℚ (rational) and ℝ- ℚ (irrational) numbers, which is also a Field. 
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Rational numbers - ℚ 
§ The set of rational numbers is defined as the set ℚ = @

A , 𝑝, 𝑞 ∈ ℤ×ℤ∗

§ Important concepts: 
§ ℚ is fully ordered;

§ Integer part: ∀𝑥 ∈ ℚ, ∃! 𝑛 ∈ ℤ such that n ≤ 𝑥 < 𝑛 + 1. n is called the integer part of x. 

§ ℚ is dense: ∀ 𝑥, 𝑦 ∈ ℚ#, ∃ 𝑧 ∈ ℚ such that 𝑥 < 𝑧 < 𝑦. (take the average of x and y for 
example). 

§ ℚ is dense in ℝ: ∀ 𝑥, 𝑦 ∈ ℝ#, ∃ 𝑧 ∈ ℚ such that 𝑥 < 𝑧 < 𝑦.

Hint for demo: consider 𝑥, 𝑦 ∈ ℝ- & 𝑦 > 𝑥, 𝜀 = 𝑦 − 𝑥 > 0. ∃𝑛 ∈ ℕ∗ such that /
0
< 𝜀. Consider the 

integer 𝑝 = 𝐸 𝑛𝑥 + 1, where E is the integer part where 𝐸 𝑛𝑥 ≤ 𝑛𝑥 < 𝐸 𝑛𝑥 +1. The rational 𝑟 = 1
0
 

verifies 𝑥 < 𝑟. Also, r = 2 03
0

+ /
0
< 𝑥 + 𝜀 = 𝑦.

§ Representation of ℚ	elements as an irreducible fraction: 

 ∀𝑥 ∈ ℚ, ∃! (𝑝, 𝑞) ∈ ℤ×ℕ∗ such that 𝑥 = @
A 	 &	gcd(𝑝, 𝑞) = 1 (ie p and q are co-prime). 

Proof: existence: if 𝑥 ∈ ℚ, ∃(𝑝, 𝑞) ∈ ℤ×ℕ∗ such that 𝑥 = 1
4

. If gcd 𝑝, 𝑞 = 1 the existence is proven. If 

gcd 𝑝, 𝑞 = 𝛿 > 1, then ∃(𝑝′, 𝑞′) ∈ ℤ×ℕ∗ such that p = 𝛿𝑝′, q = 𝛿𝑞′ and gcd 𝑝′, 𝑞′ = 1. p’ and q’ verify that 𝑥 = 15
45

.

Unicity:  Lets (p,q) and (u,v) ∈ ℤ×ℕ∗ be two representations of 𝑥 ∈ ℚ, such that 𝑥 = 1
4
= 6

7
. We then have 𝑝𝑣 = 𝑢𝑞.

So p|𝑢𝑞 and from Gauss, p|𝑢. But also, |𝑢 𝑝𝑣 and so |𝑢 𝑝. Hence 𝑝 = 𝑢, and so 𝑞 = 𝑣. 
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Real numbers -ℝ

§ The set of real numbers ℝ is characterized by the following important properties:

- (ℝ,+,x) is a commutative Field;
- ≤ is a total order relation in ℝ.
- ∀ 𝑎, 𝑏, 𝑐 ∈ ℝ8, 𝑎 ≤ 𝑏 ⟹ 𝑎 + 𝑐 ≤ 𝑏 + 𝑐 & (𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑐 ≥ 0 ⟹ ac ≤ 𝑏𝑐)
- Any non-empty set of real numbers that has an upper bound must have a least upper bound in real 

numbers. 

§ Important notions used in engineering problems:
§ Absolute value: 

§ ∀𝑥 ∈ ℝ, 𝑥 = 𝑥 𝑖𝑓 𝑥 ≥ 0,−𝑥 𝑖𝑓 𝑥 ≤ 0 .
§ ∀ 𝑥, 𝑦 ∈ ℝ-, 𝑥𝑦 = 𝑥 𝑦
§ ∀𝑥 ∈ ℝ∗, /

3
= /

3
§ ∀ 𝑥, 𝑦 ∈ ℝ-, 𝑥 + 𝑦 ≤ 𝑥 + 𝑦 , and 𝑥 − 𝑦 ≤ 𝑥 − 𝑦

§ The common distance in ℝ between two points is usually defined as 
∀ 𝑥, 𝑦 ∈ ℝ-, 𝑑 𝑥, 𝑦 = 𝑥 − 𝑦  

§ ∀ 𝑥, 𝑦 ∈ ℝ-, 𝑑 𝑥, 𝑦 = 0 ⟺ 𝑥 = 𝑦;  ∀ 𝑥, 𝑦 ∈ ℝ-, 𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥 ;
§ ∀ 𝑥, 𝑦, 𝑧 ∈ ℝ8 𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧

§ Inequality of Cauchy-Schwartz: 

Y
9:/

0

𝑥9𝑦9

-

≤ Y
9:/

0

𝑥9- Y
9:/

0

𝑦9-

§ Inequality of Minkowsky: ∑9:/
0 (𝑥9+𝑦9)- ≤ ∑9:/

0 𝑥9- + ∑9:/
0 𝑦9-
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Real numbers -ℝ

§ Nth root: ∀ 𝑦, 𝑛 ∈ ℝ;×ℕ∗, ∃! 𝑥 ∈ ℝ tel que 𝑥0 = 𝑦.

§ Notation: we call y the nth root and write: 𝑥 = ! 𝑦 , or 𝑥 = 𝑦//0

§ It is called a nth root because it is the root of the polynomial of degree n: 𝑃 𝑥 = 𝑥0 − 𝑦

§ Hint of demonstration: 

First, one can consider the set 𝐸 = 𝑥 ∈ ℝ!, 𝑥" ≤ 𝑦 . 𝐸 is not empty (0 ∈ 𝐸) and is bounded, so 𝐸 admits a least upper bound b.  
Then one shows that if 𝑏" < 𝑦, then ∃𝜀 ∈ ℝ such that (𝑏 + 𝜀)"< 𝑦 which is a contradiction. 
Similarly, one shows that if 𝑏" > 𝑦, then ∃𝜀 ∈ ℝ such that (𝑏 − 𝜀)"> 𝑦 which is a contradiction. 

§ Root of a second degree polynomial 

§ For 𝑎, 𝑏, 𝑐 ∈ ℝ8, 𝑎 ≠ 0 we consider the trinomial for 𝑥 ∈ ℝ, 𝑇 𝑥 = 𝑎𝑥- + 𝑏𝑥 + 𝑐 and its discriminant 
∆= 𝑏- − 4𝑎𝑐:
§ If ∆< 0, ∀𝑥 ∈ ℝ, 𝑎𝑇 𝑥 >0
§ If ∆= 0,	T has one root − =

->
, and 𝑎𝑇 𝑥 ≥ 0

§ If ∆> 0, T has two roots 𝑥5 and 𝑥55	with 𝑥5 + 𝑥55 = − =
->

 and 𝑥5𝑥55 = ?
@

§ 𝑥5 = A=A ∆
->

 and 𝑥55 = A=; ∆
->

§ Hint of demonstration: 

𝑇 𝑥 = 𝑎𝑥# + 𝑏𝑥 + 𝑐 = 𝑎 𝑥 +
𝑏
2𝑎

#
−
𝑏#

4𝑎#
+
𝑐
𝑎
= 𝑎 𝑥 +

𝑏
2𝑎

#
−

∆
4𝑎#
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The birth of complex numbers

§ Complex numbers were invented to address the need of solving 
cubic equations, or of finding roots to polymers of degree 3. 

§ In this search, The solution put forward by Girolamo Cardano 
(1501 – 1576) made appear the square root of negative numbers. 

     These strange square roots cancelled out, but still showed up and                
     no one could make sense of them. 
     What is −1 ?

§ For equations of the second degree, it is also very useful to consider non real solutions 
(imaginary ones) when the discriminant is negative.   

Cardano 1501-1576

§ They were also already considered although not explicitly, in the 
fact of finding numbers when multiply by themselves give a 
negative number, i.e. 𝑥 ∈?… 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥# < 0.

§ Descartes used such square root, but since they made no sense 
mathematically he called them imaginary numbers. 
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Complex numbers in Materials Science

§ Complex numbers are a great tool to manipulate angles and magnitudes. 

§ They are extremely useful to deal with phases and losses / dissipation phenomena in 
physics, materials science and engineering in general. 

§ They are also essential in the theoretical framework of modern physics such as in quantum 
mechanics.   

§ Are complex numbers “real” in the sense that they represent real physical values, objects 
and phenomena ? 

     This is still debated ! 
     Nature: https://doi.org/10.1038/s41586-021-04160-4
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Plane wave at interfaces
§ Complex formalism is a powerful tool to apprehend many phenomena in materials science 

and engineering. 
§ An important one relates to the propagation of light at the interface of two materials: 

§ At the interface, the tangential electric field must be continuous:
 𝑬𝒊,𝑻 𝒓𝒊𝒏𝒕𝒆𝒓𝒇𝒂𝒄𝒆, 𝑡 + 𝑬𝒓,𝑻 𝒓𝒊𝒏𝒕𝒆𝒓𝒇𝒂𝒄𝒆, 𝑡 = 𝑬𝒕,𝑻 𝒓𝒊𝒏𝒕𝒆𝒓𝒇𝒂𝒄𝒆, 𝑡  

𝑬𝒓 𝒓, 𝑡 = 	𝑬𝒐𝒓𝑒<(𝒌𝒓.𝒓>?@) 

𝑬𝒕 𝒓, 𝑡 = 	𝑬𝒐𝒕𝑒<(𝒌𝒕.𝒓>?@) 

𝑬𝒊 𝒓, 𝑡 = 	𝑬𝒐𝒊𝑒<(𝒌𝒊.𝒓>?@)

§ This leads to: 𝑘1W = 𝑘XW = 𝑘YW

§ And hence Snell’s law:  𝜃A = 𝜃B	 and 𝑘@ sin 𝜃@ = 𝑘B sin 𝜃B  

§ Where, inside a material: 𝑘A = 𝑛B
?
C

  and 𝑘Y = 𝑛Y
Z
/  
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Plane wave at interfaces

§ In waveguides and optical fibers, 𝑛1 > 𝑛Y so 
that there is a critical angle 𝜃/ such as: 

 ∀𝜃1 ≥ 𝜃/ ,sin 𝜃Y = sin 𝜃1
2&
2C
≥ sin 𝜃/

2&
2C
= 1

So there is no real solution for 𝜃Y, and we have 
a total internal reflection. 

§ The complex numbers formalism enable to express this differently and have a deeper 
physical interpretation of this result. 

§ 𝑘Y = 𝑛Y
Z
/ = 𝑘YW

# + 𝑘Y[
# which we can re-write: 𝑘Y[ = 𝑘Y

# − 𝑘YW
#, or: 

𝑘Y[ = 𝑛Y
𝜔
𝑐

1 −
𝑛1#

𝑛Y#
sin# 𝜃1

 
§ So, when 𝜃1 ≥ 𝜃/, 𝑘Y[ = 𝑗𝑛Y

Z
/

2&!

2C!
sin# 𝜃1 − 1

§ No propagation in the cladding material ! 

The electric field decays exponentially in the z direction, carrying no energy. 

!! ", $ = 	!"!'#(%!.!'())

!+ ", $ = 	!"+'#(%".!'())

!, ", $ = 	!",'#(%#.!'())

𝑬𝒕 𝒓, 𝑡 = 	𝑬𝒐𝒕𝑒
>DE.

/
0

123

1.3
FGH3 I2 >J

𝑒<(𝒌𝒕𝒙.𝒙>?@) 
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Construction of ℂ

§ One way to build the set of complex numbers is to define two operations over ℝ#, + and x, 
such that: 

 ∀ 𝑥, 𝑦 & 𝑥\, 𝑦\ ∈ ℝ#, 𝑥, 𝑦 + (𝑥\, 𝑦′) = (𝑥 + 𝑥\, 𝑦 + 𝑦\)
   𝑥, 𝑦 × 𝑥\, 𝑦\ = (𝑥𝑥\ − 𝑦𝑦\, 𝑥𝑦\ + 𝑥\𝑦)

§ One can easily show that (ℝ#, +,×) is a commutative Field that is called ℂ.

§ ∀𝑥 ∈ ℝ, 𝑥, 0  is a sub field of (ℝ#, +,×) since the addition and product are also of the form 
(y,0). ℝ× 0  and ℝ are hence interchangeable, and the element 𝑥, 0  can be referred to as 𝑥.

§ We can define 𝑖 = (0,1), which verifies 𝑖# = −1,0 = −1

§ We also have: 	𝑖 = −1  which allows to express the square root of negative numbers.
Example: −5 = 𝑖 5

§ With these conventions, one can write:
 ∀ 𝑥, 𝑦 ∈ ℝ#, 𝑥, 𝑦 = 𝑥, 0 1,0 + 𝑦, 0 0,1 = 𝑥 + 𝑖𝑦

§ The form z = 𝑥 + 𝑖𝑦 constitutes the algebraic form of a complex number z.

§ 𝑥 is called the real part and written 𝑥 = 𝑅𝑒(𝑧), and 𝑦 is the Imaginary part with 𝑦 = 𝐼𝑚 𝑧 .

§ One can easily show that ℂ is a ℂ-vectorial space of dimension 1, and a ℝ-vectoral space of 
dimension 2 
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Manipulations and relations in ℂ

§ For z = 𝑥 + 𝑖𝑦 and z\ = 𝑥\ + 𝑖𝑦\ we hence have, using algebraic calculation and the fact that 
𝑖# = −1

𝑧 + 𝑧\ = 𝑥 + 𝑥\ + 𝑖(𝑦 + 𝑦\)

§  So Re(z+z’) = Re(z) + Re(z’) and Im(z+z’) = Im(z) + Im(z’)

§ A complex number z = 0 if and only if Re(z) = Im(z) = 0.

§ This directly means that for two complex numbers z and z’:

 z = z’ if and only if Re(z) = Re(z’) and Im(z) = Im(z’)

§ Conjugate: 𝑧∗ = 𝑥 − 𝑖𝑦. Also noted ̅𝑧.

§ The modulus of a complex number  z = 𝑥 + 𝑖𝑦  is given by: 𝑧 = 𝑧𝑧∗ = 𝑥# + 𝑦#

§ For (𝑧, 𝑧\) ∈ ℂ#, the multiplication proceeds as follow: 

𝑧×𝑧\ = 𝑥 + 𝑖𝑦 × 𝑥\ + 𝑖𝑦\ = 𝑥𝑥\ − 𝑦𝑦\ + 𝑖(𝑥\𝑦 + 𝑥𝑦\)

§ The division: [[\ =
W<1]
WD<1]\ =

(W<1])(WD=1]D)
[\ ! = WWD<]]\

W\!<]\! + 𝑖
WD]=W]\
W\!<]\!
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§ The polar form comes quite naturally when looking at the graphical representation. It is very 
similar to cylindrical coordinates in 2D. 

Polar form of complex numbers

§ In the orthonormal plane, it is straightforward that, for 𝑧 = 𝑥 + 𝑖𝑦 
if we call r the magnitude of the depicted vector, then :

  𝑥 = 𝑟𝑐𝑜𝑠𝜃	, 𝑦 = 𝑟𝑠𝑖𝑛𝜃 

Hence one can write : z = 𝑟𝑐𝑜𝑠𝜃 + 𝑖𝑟𝑠𝑖𝑛𝜃 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)

r is called the modulus and θ is the argument. 

𝑟 = 𝑥# + 𝑦#  and tan𝜃 = ]
W

𝑧 = 𝑥 + 𝑖𝑦 

§ The multiplication of complex numbers can now be more easily 
interpreted on the graphical representation. 

Remember that: § For z = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) and z′ = 𝑟′(𝑐𝑜𝑠𝜃′ + 𝑖𝑠𝑖𝑛𝜃′) 

zz′ = 𝑟𝑟′(cos 𝜃 + 𝜃\ + 𝑖𝑠𝑖𝑛 𝜃 + 𝜃\ )

𝑧
𝑧′
=
𝑟
𝑟′
(cos 𝜃 − 𝜃\ + 𝑖𝑠𝑖𝑛 𝜃 − 𝜃\ )
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Exponential form of complex numbers

§ There is a very convenient way to write the polar form :

z = 𝑟𝑐𝑜𝑠𝜃 + 𝑖𝑟𝑠𝑖𝑛𝜃 = 𝑟𝑒1^ 

§ The relation 𝑒1^ = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 is called the Euler relation

§ Does it make sense to bring a real number to the power of a complex number ?

§ We will review that, for 𝑥 ∈ ℂ :  

𝑒W = |
:_`

a
𝑥:

𝑘!

cos 𝑥 = ∑:_`a (−1): W!"

(#:)!
   and.  sin(x) = ∑:_`a (−1): W!"E$

(#:<!)!

§ For z ∈ ℂ, 𝑧 = 𝑟𝑒1^, 𝑧∗ = 𝑟𝑒=1^
§ Note also that: 

cos 𝑥 =
𝑒1W + 𝑒=1W

2

sin 𝑥 =
𝑒1W − 𝑒=1W

2𝑖



22

§ With the exponential form, all the product of division of complex numbers study above become 
easier to establish

§ z, z′ ∈ ℂ, 𝑧 = 𝑟𝑒1^, 𝑧′ = 𝑟𝑒1^D

 
 zz\ = 𝑟𝑟\𝑒1^𝑒1^D = 𝑟𝑟\𝑒1(^<^D) so 𝑧𝑧\ = 𝑟𝑟′ cos 𝜃 + 𝜃\ + 𝑖𝑠𝑖𝑛 𝜃 + 𝜃\  

[
[\
= Xc&F

XDc&FD
= X

X\
𝑒1(^=^D)        so    [

[\
= X

X\
(cos 𝜃 − 𝜃\ + 𝑖𝑠𝑖𝑛 𝜃 − 𝜃\ )

§ Raising to a power: for 𝑧 = 𝑟𝑒de,

(remember that in engineering, “𝑖” is sometimes written “𝑗”)`

§ Link with the algebraic form: 

𝑟 = 𝑥# + 𝑦#  and tan𝜃 = ]
W

 𝑐𝑜𝑠𝜃 = W
W!<]!

 and sin𝜃 = ]
W!<]!

Exponential form of complex numbers
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Complex numbers: the unit circle

§ Remember that 𝑒1^ is periodic ! So:

𝑒1^ = 𝑒1(^<#@%), 𝑝 ∈ ℤ

§ 𝑒1^ = 1 = 𝑥# + 𝑦#, with 

𝑥 = 𝑐𝑜𝑠𝜃 and y= 𝑠𝑖𝑛𝜃 

So the x coordinate are the cosine of the angle;
The y coordinates are the sine of the angle. 

Example: cos %
$ = !

# ; sin
%
$ = $

#

§ Roots: 

§ Exemple: 
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Complex Functions

§ Polynomials
§ Fundamental theorem: every polynomial in ℂ admits at least one root. 

§ It is obvious for a polynomial of degree 1. 

§ For degree 2, remember that: 

𝑇 𝑥 = 𝑎𝑥# + 𝑏𝑥 + 𝑐 = 𝑎 𝑥 +
𝑏
2𝑎

#
−
𝑏#

4𝑎#
+
𝑐
𝑎
= 𝑎 𝑥 +

𝑏
2𝑎

#
−

∆
4𝑎#

§ If ∆< 0, ∆= 𝑖 −∆ so the polynomial has two roots:  𝑥 = =.±1 =∆
#&

§ Polynomial in ℂ of any degree are split, i.e. 𝛼1, 𝛽1 ∈ ℕ such that 𝑃 𝑋 = ∏1(𝑋 − 𝛼1)3& 

§ Logarithmic

§ For 𝑥, 𝑦 ∈ ℝ#, y = 𝑒W > 0. So 𝑥 = 𝑙𝑛𝑦 defined with y ∈ ℝ<∗

§ What is then the meaning of ln(-5) ? Make sense with a new set of numbers !

§ ln −5 = 2ln 𝑖 + ln 5 = 𝑖𝜋 + ln 5 ∈ ℂ
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Complex numbers - summary
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Complex numbers - summary
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Reciprocal Space and Bragg condition

§ The properties of complex numbers reviewed here find a great application in the 
continuation of the study of reciprocal space. 

§ Consider a plane wave of k vector k0 impingent on a crystal. 

§ Each atom/motif acts like an independent source that scatters the incoming light in 
different directions. 

§ If we first consider two atoms, the incident wave : 𝐸 = 𝐸`𝑒1(𝒌.𝒓=ZY)

§ Along the k1 direction, interference will give: 𝐸 = 𝐸`𝑒1(𝒌𝟎.𝒖=ZY)+ 𝐸`𝑒1(𝒌𝟏.𝒖=ZY)

§ Which gives:

𝐸 = 2 𝐸` 𝑐𝑜𝑠
𝒖. (𝒌𝟏 − 𝒌𝟎)

2
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𝐸(K,K,K) = 𝛼(𝑲)𝐸K𝑝⃗

𝒌𝟎 =
#%
l 𝒗`, with 𝒗` = 1; 𝒌 = #%

l 𝒗, with 𝒗 = 1.

𝒌

O𝒂

b

c

𝐸D

𝐸D
𝒌𝟎 𝑫(@,A,X) = 𝑝𝒂 + 𝑞𝒃 + 𝑟𝒄

𝐸(M,N,A) = 𝛼(𝑲)𝐸K𝑝⃗𝑒B∆P(M,N,A)

∆𝐿(@,A,X)= 𝐿` − 𝐿
∆𝐿(@,A,X)= 𝑫(@,A,X). 𝒗` − 𝑫(@,A,X). 𝒗

𝐿` = 𝑫(@,A,X). 𝒗`

𝐿 = 𝑫(@,A,X). 𝑣

Reciprocal Space and Laue’s condition

§ We can fix the phase to 0 on the origin of the crystal O. We only need to then consider
the part of the field that is scattered in the 𝑲 = 𝒌 − 𝒌𝟎 direction: 𝐸(`,`,`) = 𝛼(𝐾)𝐸`𝑝⃗

§ For another arbitrary motif in the crystal at position 𝑫(@,A,X) = 𝑝𝒂 + 𝑞𝒃 + 𝑟𝒄 (with  
(𝑝, 𝑞, 𝑟) ∈ ℤ$, we have a phase shift that builds up as the wave travels. 
This phase shift is the wave vector k = #%

l
 times the differences of optical path ∆𝐿(@,A,X): 

𝑲 = 𝒌 − 𝒌𝟎
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∆𝜑 𝑝, 𝑞, 𝑟 =
2𝜋
𝜆
∆𝐿(@,A,X)

∆𝜑 𝑝, 𝑞, 𝑟 = 𝑫(@,A,X).
#%
l
𝒗` − 𝑫 @,A,X .

#%
l
𝒗 = 𝑫 @,A,X . 𝒌𝟎 − 𝒌 = −𝑲.𝑫 @,A,X

§ The scattered field in the K direction by this motif is then given by: 𝐸(@,A,X)= 𝛼(𝑲)𝐸`𝑝⃗𝑒1∆m(@,A,X) 

§ The phase shift being: 

𝐸(K,K,K) = 𝛼(𝐾)𝐸K𝑝⃗

𝒌

O𝒂

b

c

𝐸D

𝒌𝟎 𝑫(@,A,X)

𝐸(M,N,A) = 𝛼(𝐾)𝐸K𝑝⃗𝑒B∆P(M,N,A)

§ The detector will mesaure the intensity diffracted at the distal end along the direction K, that
is the module of the total electric field, with: 

𝐸Y>Y&; 𝑲 = 𝐸 `,`,` + 𝐸 @,A,X + 𝐸(!,`,`) + 𝐸(`,!,`) + 𝐸(`,`,!) +⋯

𝐸Y>Y&; 𝑲 = |
@_=a

@_<a

|
A_=a

A_<a

|
X_=a

X_<a

𝐸 @,A,X = 𝛼(𝐾)𝐸`𝑝⃗ |
@,A,X

𝑒1∆m(@,A,X)

𝑫(!,`,`)

𝑫(`,!,`)

𝑫(`,`,!)

𝑲 = 𝒌 − 𝒌𝟎

Reciprocal Space and Laue’s condition
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§ Which we can re-write: 

𝐸Y>Y&; 𝑲 = 𝛼(𝑲)𝐸`𝑝⃗ |
@,A,X

𝑒=𝒊𝑲.𝑫 I,K,L = 𝐷(𝑲)𝐸`𝑝⃗

𝐷 𝑲 = 𝛼(𝑲) |
@,A,X

𝑒=𝒊𝑲.𝑫 I,K,L

§ This scattering is maximum for

         ∀ 𝑝, 𝑞, 𝑟 ∈ ℤ$, 𝑒=𝒊𝑲.𝑫 I,K,L = 1

condition from which we built the reciprocal basis (O, a*,b*,c*) that is the same as the one built 
from the geometric argument. 

Reciprocal Space and Laue’s condition
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§ This works with: 

o Which forms the same reciprocal basis (a*,b*,c*) we defined earlier !

§ And we get:
∀ 𝑑!, 𝑑#, 𝑑$ ∈ ℤ $, 𝑥!𝑑! + 𝑥#𝑑#+𝑥$𝑑$ ∈ ℤ

which imposes that 𝑥!, 𝑥#, 𝑥$ ∈ ℤ $. 

Hence we have formed the reciprocal lattice ! 

  ℛ = 𝑃,𝑶𝑷 = 𝑛!𝒂∗ +𝑛#𝒃∗ +𝑛$𝒄∗, (𝑛!, 𝑛#, 𝑛$) ∈ ℤ𝟑

The condition of interference: 𝑲 = 𝒌𝟏 − 𝒌𝟎 ∈ ℛ is called commonly the condition of Laue. 

This condition is equivalent to the commonly known Bragg law. 

Reciprocal Space and Laue’s Condition

This is a more general Bragg condition. 

§ If we define a basis of vectors (a*,b*,c*) in which we can define 𝑲 = 𝑥!𝒂∗ +𝑥#𝒃∗ +𝑥$𝒄∗ 
with 𝑥!, 𝑥#, 𝑥$ ∈ ℝ$ , and since Dn is a lattice vector in the direct space, we have 
𝑑!, 𝑑#, 𝑑$ ∈ ℤ$ such that 𝑫𝒏= 𝑑!𝒂	 + 𝑑#𝒃.+𝑑$𝒄, we must have: 

𝑥!𝒂∗ +𝑥#𝒃∗ +𝑥$𝒄∗ . 𝑑!𝒂	 + 𝑑#𝒃.+𝑑$𝒄 = 2𝑝𝜋 with 𝑝 ∈ ℤ
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Bragg Law and Laue’s condition

§ Laue’s condition does not constraint on the diffracted direction. As long as the difference 
of the incoming wave vector, and the diffracted one, belongs to the reciprocal space, 
constructive interference from the Bravais Lattice should occur.

§ Bragg’s law is a particular case where the diffracted direction is only considered at an 
angle 2𝜃. 

𝜃
2𝜃

𝒌𝟎

𝒌𝟏

𝒌𝟏 − 𝒌𝟎

o Laue condition:  𝑲 = 𝒌𝟏 − 𝒌𝟎 ∈ ℛ, the Reciprocal 
space;

o Bragg condition: Diffraction measured when 
𝑲 = 𝒌𝟏 − 𝒌𝟎 is orthogonal to the diffracting plane
(ℎ𝑘𝑙) 

o So: ∃𝛼 ∈ ℝ,𝑲 = 𝛼𝑵 𝒉𝒌𝒍
∗ = 𝛼ℎ𝒂∗ +𝛼𝑘𝒃∗ +𝛼𝑙𝒄∗

o And we must have 𝑲 ∈ ℛ, so αℎ ∈ ℤ ⟹ 𝛼 ∈ ℤ

o Hence ∃𝑛 ∈ ℤ, 𝑲 = 𝑛𝑵 𝒉𝒌𝒍
∗

o 𝑲 = 2𝑘𝑠𝑖𝑛 𝜃 = s%
l
𝑠𝑖𝑛 𝜃  and 𝑵 𝒉𝒌𝒍

∗ = #%
t()"+)

o So: s%l 𝑠𝑖𝑛 𝜃 = 𝑛 #%
t()"+)

⇒ 2𝑑(9:;)𝑠𝑖𝑛 𝜃 = 𝑛𝜆
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SUMMARY
§ We reviewed reciprocal spaces. 

§ We introduced rational and real numbers with a few important properties. 

§ We reviewed the application of complex numbers and how one can construct the field of 
complex numbers. 

§ We defined the algebraic form (sometimes also called the arithmetic) form of complex 
number z = x + iy , and the polar form z = 𝑟𝑐𝑜𝑠𝜃 + 𝑖𝑟𝑠𝑖𝑛𝜃

§ We finally defined the polar form z = 𝑟𝑒1^ and express the relationship between the 
different ways of expressing and manipulating complex numbers. 

§ We reviewed the unit circle, and show examples on how complex numbers can extend 
the use of common functions that become complex functions. 

§ We showed a direct application of complex numbers in how one handles the propagation 
of waves, and how ones construct the reciprocal space for deriving the Bragg condition 
for X-rays probing a crystal lattice. 

§ Next Week

§ Linear Algebra


